Mark scheme - Amino Acids, Amides and Chirality

		Answer/Indicative content	Mark s	Guidance
1	i	Stereoisomers Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) AND Type: Optical $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 1 \\ .2) \end{gathered}$	ALLOW structure/displayed/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula IGNORE references to chiral molecules/compounds
	ii	One 3D structure with correct groups attached to the chiral $C \checkmark$ Two 3D structures of $(\mathrm{CH} 3) 3 \mathrm{CCHBrCH} 3$ that are mirror images AND correct connectivity in both \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \\ .5) \\ (\mathrm{AO} 1 \\ .2) \end{gathered}$	ALLOW small slip in one of the groups OR use of C4H9 3D structures must have four central bonds with at least two wedges. For bond into paper accept: ALLOW two 3D structures with 2 groups swapped e.g.
		Total	3	
2	a	Correct groups attached to chiral C of cysteine seen once e.g. OR Two 3D structures of cysteine that are mirror images with correct connectivity in both \checkmark	2	Each structure must have four central bonds with at least two wedges. For bond into paper accept: ALLOW bond to any part of the CH_{2} of the $\mathrm{CH}_{2} \mathrm{SH}$ group e.g. ALLOW ALLOW two 3D structures with 2 groups swapped e.g. IF CH ${ }_{2} \mathrm{SH}$ is shown as ' R ' ALLOW 1 mark for two 3D structures with correct connectivity that are mirror images e.g.

6.2.2 Amino Acids, Amides and Chirality

				identified the dichloride salt produced by the reaction of lysine with excess acid. Some candidates formed ammonium ions on both nitrogen atoms but omitted the chloride ions. Others only formed a monochloride salt, leaving the R group unchanged. These two approaches scored one mark.
		Total	4	
3	i	 - Correct titration results recorded with Titre / cm initial and final readings, clearlydabeled AND all readings recorded to two decimal places with last figure either 0 or 5 Titres - Correct subtractions to obtain final titres to 2 DP Units - Units of cm^{3} for initial, final and titres \checkmark Mean titre - mean titre $=\frac{22.55+22.45}{2}=22.50 \text { OR } 22.5 \mathrm{~cm}^{3} \checkmark$ i.e. using concordant (consistent) titres	4	Table not required ALLOW initial reading before final reading ALLOW ECF ALLOW units with each value ALLOW brackets for units, i.e. (cm^{3}) ALLOW ECF from incorrect concordant titres Examiner's Comment: This question should have been four straightforward marks, but it was actually found very challenging by candidates. Most read the scales correctly but then did not present their findings clearly, often scattering unlabelled numbers around, omitting units with absence of any heading linking them to the burettes. 0.60 was very often shown as 0.6 and 22.80 as 22.8 . Candidates were expected to take the mean of their closest titres but a significant number took an average of all three titres instead. The mark scheme allowed for a

6.2.2 Amino Acids, Amides and Chirality

				of compound A with two chiral carbon atoms. Most candidates scored some marks but processing beyond the molar mass proved to be difficult for weaker candidates. Some candidates showed a structure with a linear $\mathrm{C}_{4} \mathrm{H}_{9}$ group which contains one chiral carbon atom. A common error was use of $25.0 \mathrm{~cm}^{3}$, instead of the titre, as the volume of NaOH , obtaining an initial value of $2.10 \times$ $10^{-3} \mathrm{~mol}$. The mark scheme allowed processing of this value to be credited using error carried forwards. Some candidates omitted to scale their initial value by a factor of $\times 10$, obtaining a molar mass of over $1000 \mathrm{~g} \mathrm{~mol}^{-1}$, e.g. 1320 instead of 132. A large range of marks was seen and the question discriminated extremely well.
		Total	10	
4	a	(optical isomers are) non-super imposable mirror images \checkmark Two 3D structures of serine that are mirror images irrespective of connectivity \checkmark Correct connectivity in both structures \checkmark	3	
	ii	Dipeptide Ser-Gly Dipeptide Gly-Ser Esterification of OH on Ser	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW structures in any order
	b i	Structure of aspartic acid	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

5

		$\checkmark \checkmark \checkmark$		ALLOW sextet/hextet/six (or more than 5) as alternative to multiplet Relative peak area $=\mathrm{CH} / 3 \mathrm{H}$ etc. penalise once Examiner's Comments Although it could be argued that this question tested the same skill three times, the full range of marks was awarded and errors were seen in the chemical shift, relative peak area and splitting pattern. Fully correct responses included either a chemical shift value within the range specified on the data sheet or a range that matched the one given on the data sheet.
	ii	$\frac{\mathrm{M}^{+} \text {peak at } 75 \text { (peak 1) }}{\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}^{+}}$ $\frac{\text { Fragment peak at 44 }}{\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right)^{+} / \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}^{+}}$(peak 2) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right)^{+} / \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}^{+}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Positive charge is essential but ALLOW maximum of one mark if both formulae are correct AND neither species has a positive charge Examiner's Comments Although peak 2 was often correct, the species responsible for the $\mathrm{M}+$ peak was often missing a positive charge. Possibly students have learned that the particles become charged as part of the fragmentation process and don't realise that only charged particles can be detected by a mass spectrometer.
b		Ethanolic ammonia OR ammonia/ NH_{3} AND ethanol	1	ALLOW ammonia in a sealed tube ALLOW dilute ethanolic ammonia/ NH_{3} IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions Examiner's Comments A well answered question. Some candidates forgot to use a solvent or suggested the use of aqueous ammonia.
	ii	(compound D)	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments This question discriminated well. Although there were very few blank pages, many incorrect structures were seen.

6.2.2 Amino Acids, Amides and Chirality

b		Measure distance moved by spot/distance moved by solvent $\sqrt{ }$	2	ALLOW attempt at calculation of R_{f} value using distances measured on the chromatogram IGNORE explanation of how chromatography works
		Compare (R_{f}) value with data book values/known values \checkmark Two amino acids have the same/similar R_{f} value OR similar adsorption OR move the same/similar distance \checkmark	1	ALLOW One spot contains two amino acids ALLOW Two amino acids have not separated IGNORE relative solubility ALLOW two of the amino acids have similar structures Examiner's Comments This question discriminated well with relatively few candidates able to score all three marks. Some candidates attempted to explain how the technique separates components between a mobile phase and a stationary phase which was not required by the question. There was some confusion with gas chromatography and retention times. Vague answers about all amino acids having similar structures did not score the final marking point to explain why only two spots appeared on the chromatogram.
		The $\mathbf{p H}$ at which the amino acid exists as a zwitterion \checkmark QWC: zwitterion spelled correctly in the correct context	1	DO NOT ALLOW PH/ph ALLOW zwitter ion Examiner's Comments This definition had been learned by the majority of candidates.
	ii		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Two COO^{-}groups are required in the structure ALLOW -COO- Na^{+}OR -COONa ALLOW delocalised carboxylate ALLOW DO NOT ALLOW -COO-Na OR -O-Na (covalent bond) Examiner's Comments Generally well answered but structures with only one

				carboxylate group were quite common and some candidates showed aspartic acid being protonated at high pH.
	ii	M1 structure M2 correct structure has three chiral centres	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW tripeptide with the 3 amino acids in any order ALLOW cyclic tripeptide Isoleucine has two chiral centres, aspartic acid has one chiral centre and glycine has none. ALL three correct for one mark ALLOW chiral centres correctly identified if the three amino acids are part of a polypeptide chain Examiner's Comments A more challenging question with relatively few candidates able to show the position of all three chiral centres on a correct tripeptide structure. Most candidates identified the chiral centres in the amino acid backbone of aspartic acid and isoleucine and realised that glycine was not chiral, but many missed the second chiral centre in isoleucine.
		Total	9	
7	a	 $-\mathrm{NH}_{3}{ }^{+}$in second product \checkmark	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW $-\mathrm{O}^{-} \mathrm{Na}^{+} \mathrm{OR}-\mathrm{O}^{-}$(cation not required) DO NOT ALLOW -O-Na (covalent bond) DO NOT ALLOW -O (without the sodium) ALLOW delocalised carboxylate Examiner's Comments The majority scored two marks here. The question had a three mark total for drawing two structures and this may have prompted some candidates to incorrectly form a salt with the alcohol group in reaction 1. Many were able to draw a correct structure for the ester formed in reaction 2, but very few protonated the amine group in acidic

				conditions. The protonation of hydrolysis products has been well represented in recent papers.
	ii	perfume / fragrance / flavouring \checkmark	1	IGNORE solvent OR food additive Examiner's Comments Well answered with most of the correct responses referring to perfumes and flavourings which are the uses listed in the specification. Common responses marked as incorrect were suggestions that this ester could be used for making dyes, polymers or textiles.
		Reaction 3: (hot) ethanolic ammonia Reaction 4: oxidation Reaction 5: hydrolysis \checkmark	3	ALLOW NH3 (dissolved) in ethanol IGNORE other conditions ALLOW oxidisation / oxidised DO NOT ALLOW redox ALLOW nucleophilic addition-elimination DO NOT ALLOW nucleophilic substitution IGNORE acid / base Examiner's Comments Most candidates were able to score at least one mark here, usually for correctly identifying reaction 4 as an oxidation reaction. Although the use of excess reagent was not required for reaction 3, some missed ethanol as an essential solvent and reaction 5 was occasionally described as a reduction.
b		M1 Compound E M2 Compound F M3 Compound G	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Labels are not required for compound $\mathrm{E}, \mathrm{F}, \mathrm{G}$ or H IGNORE labels for M1, M2, M3 and M4 $\mathrm{CH}_{2}=\mathrm{CH}$ must be shown in E ALLOW $\mathrm{C}_{2} \mathrm{H}_{3} \mathbf{O R ~ C H C H}$ for $\mathrm{CH}=\mathrm{CH}_{2}$ in \mathbf{F} ALLOW ECF from error in structure of aldehyde E ALLOW multiple repeat units but must be full repeat units ALLOW end bonds shown as \qquad DO NOT ALLOW if structures have no end bonds

(

				the correctly labelled compound and some candidates lost marks here because their description was linked to the wrong polymer.
		Total	13	
8	i		1	ALL correct for one mark Examiner's Comments This part was answered well by many candidates. Some missed the chiral centre on the proline moiety or added an asterisk to a carbonyl carbon.
	ii	any two from: no / fewer side effects increases the (pharmacological) activity / effectiveness Reduces / stops the need for / cost / difficulty in separating stereoisomers / optical isomers	2	IGNORE toxic / harmful IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate" Examiner's Comments Most candidates gained this mark by stating that the use of a single stereoisomer results in fewer side effects and increased pharmacological activity. Vague answers and comments about a reduced dose did not score marks.
		 \checkmark one mark for ethanol one mark for proline with NH OR $\mathrm{NH}_{2}{ }^{+}$ \checkmark one mark for remaining fragment with Fourth mark for structure of both ions shown correctly with $\mathrm{NH}_{2}{ }^{+}$	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on H of NH_{2} groups, i.e. $\mathrm{NH}_{2}{ }^{+}$ IGNORE negative (counter) ions Examiner's Comments This question discriminated well. Most candidates were able to score one mark for the formula of ethanol. Only a small number of able candidates scored full marks for including the correct formulae for the protonated amine groups formed during acid hydrolysis.
		idea of separating (the components / compounds) AND idea of (identifying compounds by) comparison with a (spectral) database	1	ALLOW (identifies compounds) using fragmentation (patterns) / fragment ions (but IGNORE molecular ions) IGNORE retention times Examiner's Comments

				To get the mark for this question candidates had to include points about the separation of the mixture and identification of the compounds. Answers based on identification using retention times or measurement of molar mass did not score the mark.
		Total	8	
9	i		1	Must be skeletal formula
	ii		2	IGNORE charges ALLOW Cs and Hs labelled on structures Marks are for correct connectivity
	i	Alanine has a chiral C atom / centre	1	
		Total	4	
	a	Atom A: 3 bonding pairs AND 1 lone pair (therefore) pyramidal AND 1070 33 bonding centres (and 0 lone Atom B: pairs) (therefore) trigonal planar AND 120° 	4	ALLOW 106-108 ${ }^{\circ}$ ALLOW 4 bonding pairs but with 1 double / π - bond (therefore 3 bonding centres)
	ii	 filter solution recrystallise	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
	b		1	
	ii	 OR structure with COOH rather than COO^{-} Right-hand fragment	4	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

6.2.2 Amino Acids, Amides and Chirality

	 OR structure with COOH rather than COO^{-} Two OR three COO^{-}shown		ALLOW 1 mark for structure with right-hand ring still intact
	Total	12	

